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COMPARISON OF TEMPERED AND TRUNCATED FRACTIONAL
MODELS

HAYLEY A. OLSON∗, MARTA D’ELIA† , MIKIL FOSS‡ , MAMIKON GULIAN§ , AND

PETRONELA RADU¶

Abstract. Tempered fractional operators are able to model effects that classical partial dif-
ferential equations cannot capture, such as the super- and sub-diffusive effects that are present in
hydrology and geophysics models. However, tempered fractional operators are computationally in-
tensive due to the infinite range of interaction for the integral operator. We analyze a truncated
variation of the fractional operators, which are less computationally intensive, in an effort to use
them in place of the more complex tempered variation. In particular, we train parameters of the
truncated operator using neural networks in order to optimize the difference of the actions of the
two operators.

1. Introduction. Fractional models are nonlocal models that can be utilized in
place of standard partial differential equations (PDEs) when trying to model anoma-
lous effects that standard PDEs fail to describe. For example, fractional models have
found applications in subsurface diffusion and transport, turbulence, and machine-
learning algorithms. Here, we are considering the tempered variation of the fractional
Laplacian introduced in [5] which has applications in; e.g. hydrology and geophysics
[1, 6].

These nonlocal operators, such as the tempered fractional Laplacian, are integral
operators that act on a so-called “interaction horizon” that determine the radius of
interaction between points in the domain. The tempered fractional Laplacian has
an infinite interaction horizon. This is useful for modelling long range forces and it
reduces the regularity requirements on the solution. However, the infinite interac-
tion horizon causes the operator to be computationally complex. This work explores
whether a similar operator can be generated that mimics the tempered fractional
Laplacian while being less expensive computationally.

In particular, we investigate a truncated version of the fractional Laplacian, re-
stricting the interaction horizon to a ball of radius 0 < δ <∞. This truncation allows
for a reduction in the computational cost of the numerical evaluation of the opera-
tor. The authors have studied these two operators previously in [3] and determined
that the nonlocal fractional energy norms of the tempered fractional Laplacian and
truncated fractional Laplacian, in its simplest form, are equivalent. In this work, we
introduce a modified form of the truncated fractional Laplacian and we parametrize it
with the goal of identifying the parameters that minimize the difference of the actions
of the operators. Similar parameter identification problems for fractional models can
be found in e.g. [2, 8]. In this work the parameters are trained using deep neural
networks (DNNs). Machine learning has been used to tackle many aspects of nonlocal
models, we mention [4] as an example of the use of DNNs for the approximation of
the solution of a nonlocal equation.

This report is organized as follows. Section 2 includes relevant definitions and
previous results that will be referenced throughout. The formulation of the problem
as a loss function to optimize and characterization of the learned parameters is defined
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in Section 3. Section 4 has information about the discretization of the problem for the
numerical analysis. Computational results of learning the parameters can be found
in Section 5 with conclusions in Section 6.

2. Notation and Previous Work. Let Ω ∈ Rn be an open bounded domain.
Define the corresponding interaction domain as

ΩI = {y ∈ Rn\Ω such that x interacts with y for some x ∈ Ω}
= {y ∈ Rn\Ω : |x− y| ≤ δ for some x ∈ Ω},

where δ > 0 is the so-called interaction radius or horizon. For the tempered fractional
operator, the operator has an infinite radius of interaction. Hence, δ = ∞ and thus
ΩI = Rn \ Ω.

We will be considering two fractional operators of the general form

Lu(x) =

∫
Ω∪ΩI

u(y)− u(x)

|x− y|n+2s
γ(x,y)dy,

where n is the dimension and 0 < s < 1 is the fractional order. In particular, we will
consider the tempered fractional Laplacian, introduced in [5], which has the kernel

γtem(x,y;λ) = e−λ|x−y| (2.1)

alongside a truncated version of the fractional Laplacian which, in the simplest form,
has the kernel

γtr(x,y;σ, δ) = σX (|x− y| < δ), (2.2)

where σ and δ are positive real numbers that represent a scaling constant and the
horizon of truncation, respectively. The function X (·) represents the indicator func-
tion; thus, the support of the truncated kernel is limited to a Euclidean ball of radius
δ centered at x.

With the purpose of improving the descriptive power of the truncated operator,
we propose a modified version of γtr (that we denote by the same symbol) where both
the scaling parameter and the horizon depend on the space variable. Keeping in mind
that we will use optimization algorithms to learn these parameters, we substitute the
indicator function with a smooth approximation, so as to facilitate the use of available
machine-learning tools (this is discussed in more detail in Section 4). Thus, we define
the new truncated kernel as follows:

γtr(x,y;σ, δ) = σ(x)η(|x− y|, δ(x)), (2.3)

where σ and δ are now space-dependent parameters. Here, for the sigmoid function
S(x) = 1

1+e−x and a fixed sharpness parameter α > 0, we define η as

η(|x− y|, δ(x)) = 1− S(α(|x− y| − δ(x))). (2.4)

The fractional Laplacians with the tempered and truncated kernels will be referred
to as Ltem and Ltr, respectively.

Note that the use of the sigmoid function, supported in R, might seem in contrast
with the goal of restricting the domain of integration in the definition of the integral
operator. However, such function decays to very small values which are negligible
at the numerical level, i.e. values that are below machine precision. Thus, when
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evaluating the sigmoid-truncated operator, one is allowed to restrict the integration
domain to the set corresponding to function values above machine precision.

The tempered fractional Laplacian and the truncated fractional Laplacian in the
simple form of equation (2.2) have been compared previously in [3], where their energy
norms are shown to be equivalent. We summarize that result below. For a kernel γ,
the nonlocal fractional energy norm is defined as

E(u;µ) =

∫∫
(Ω∪ΩI)2

(u(x)− u(y))2

|x− y|n+2s
γ(x,y, µ)dydx (2.5)

where µ is a parameter that determines the kernel. Then for γtem and γtr as defined
in (2.1) and (2.2), we have the following result [3].

Theorem 2.1. There exist positive constants A and A such that, given λ > 0,

AEtr(u; δ) ≤ Etem(u;λ) ≤ AEtr(u; δ), ∀u ∈ Hs
Ω(Rn), δ <∞. (2.6)

This result, although valid only for the symmetric kernel in (2.2), provides the
foundation for our proposed kernel representation and sets the groundwork for its
mathematical analysis, which is the subject of our future work.

3. Formulation of the learning problem as the minimization of a loss
function. We describe our procedure in a one-dimensional setting and we refer to
the representation in equation (2.3). The goal is to learn functions σ(x) and δ(x)
such that they minimize the difference of the actions of the tempered and truncated
fractional Laplace operators. We consider the operators acting on a set of training
functions {ui}Ni=1 and minimize the following loss function, which is a percent error
of the L2 norm of the difference of the operators,

Loss(δ, σ) =
1

N

∑
ui

‖Ltemui(x)− Ltrui(x)‖L2(Ω)

‖Ltemui(x)‖L2(Ω)

for x ∈ [−A,A]. (3.1)

The training functions are constructed as linear combinations of basis functions,
chosen with increasing levels of complexity and different regularity properties. In
a one-dimensional setting, they are defined as follows. Let {xi}Ni=1 be a uniform
partition of [−a, a] and ∆x the distance between the points. Note that a 6= A; indeed,
in our numerical tests, A < a. The following functions are utilized, for some covering
or scale parameter c:

1. Linear hat functions (C0(R)):

ui(x) =


1
c (x− xi) + 1, xi − c < x ≤ xi
−1
c (x− xi) + 1, xi < x < xi + c

0, else.

(3.2)

2. Exponential bump functions (C∞(R)):

ui(x) =

{
exp

(
c2

(c)2−(x−xi)2

)
, xi − c < x < xi + c

0, else.
(3.3)
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3.1. Characterization of σ and δ. The parameters σ and δ are learned as
the outputs of a deep neural networks (DNNs), i.e. δ(x) = DNN1(x) and σ(x) =
DNN2(x). The networks have the following structure. In addition, in some tests the
parameter δ is trained as a constant.

The DNN for σ(x) is a fully connected DNN with m nodes in each layer, referred
to as the width of the network, and n-many hidden layers, referred to the depth of
the network. All hidden layers have the same activation function, which is specified
for each result below. Finally, the output layer is associated with a linear activation
function (i.e., an affine map, which is common practice when using NNs for regression
purposes). The DNN for δ(x) has an almost identical structure. However, the output
layer is an affine map, composed with a custom ReLU activation to force the DNN to
have a positive lower bound. This is to reflect the fact that δ(x) cannot take negative
values. In place of a standard ReLU function that maps to f(x) = max{0, x}, the
custom ReLU function maps to f(x) = max{ε, x} Here, ε = 0.05 throughout.

4. Discretization of Operators, and Optimization. Several methods of dis-
cretization were employed in order to approximate the actions of the operators and
minimize their difference. Here, we outline some of the main discretizations and ap-
proximations employed in our numerical tests. In all of the following experiments, we
fix the fractional order s = 0.25.

For the computation of both the tempered and truncated fractional operators, the
integrals are approximated as follows. Let I = [−b, b] and {yk}Sk=1 a uniform partition
of I such that yk 6= 0 for any k and let ∆y be the distance between the points. Then
for a point x in the domain, we approximate the value of the operator acting on a
function u at a the point x using a Riemann sum over the interval [x− b, x+ b]. That
is,

L`u(x) ≈ A`u(x) :=

S∑
k=1

u(x+ yk)− u(x)

|yk|n+2s
γ`(x, x+ yk)∆y,

where ` can refer to either the tempered or truncated operator. In the following
results, I = [−10, 10] and S = 1000, and thus ∆y = 0.02.

Likewise, the L2 norm of the operators is approximated using the `2 norm on a set
of discrete points in the domain Ω = [−A,A]. Specifically, let {xj}Rj=1 be a uniform
partition of Ω.

Additionally, index the training functions as {ui}Ni=1. Let

fγ`(ui(xj))(xj + yk) =
(u(xj + yk)− u(xj))

|yk|
γ`(xj , xj + yk), (4.1)

Then approximate the loss function (3.1) as

Loss ≈ 1

N

∑
ui

[∑
xj
|Atemui(xj)−Atrui(xj)|2∑

xj
|Atemui(xj)|2

]1/2

(4.2)

We recall that we are using the smoothed version of the truncated kernel (2.2),
as discussed in Section 2. The reason of this approximation resides in the fact that
δ cannot be a boolean variable during training, which is how a standard piecewise
indicator function is defined. The indicator is then approximated using the sigmoid
function as in equation (2.4), with α = 10.
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Width × Depth Training Loss Test Error
8× 2 32.857 % 30.826 %
16× 4 30.790 % 28.952 %
32× 8 30.031 % 30.511 %
128× 16 29.589 % 29.581 %

Table 5.1
Training and testing loss for different neural network sizes.

5. Computational Results. We report the results of the regression algorithm.
In all our tests, the hidden layers have a hyperbolic tangent (tanh) activation function
and we use the Adam optimizer.

For the first test, we train δ(x) and σ(x) as NNs with 8 nodes in each layer and 2
hidden layers. The training and testing functions both utilize the exponential bump
basis function as defined in (3.3). There are 32 training and 32 testing functions
formed as linear combinations of 10 exponential bump basis functions spread evenly
across the interval [−8, 8].

Results are reported in Figure 5.1. The upper left and upper center plots con-
tain the DNN prediction for the δ(x) and σ(x) parameters, respectively, on the last
iteration of the optimization. The lower left plot displays the training loss, which is
the percent error defined in (4.2) for the set of training functions. The lower center
plot displays the testing loss, which is computed in the same manner as the training
loss but on a set of testing functions. The testing functions are distinct from the
training functions (which are used to learn the parameters), but formed using the
same basis functions as the training functions. This graph illustrates how well the
learned parameters can generalize to functions outside the training set. The upper
right plot is a random test function from the set of testing functions. In the lower
right plot we report the values of the tempered and truncated operators acting on the
random test function from the upper right plot, as well as the difference of the actions
of the operators. The final value of the training loss indicates a percent error of 30%.
While this result is not entirely satisfactory, we believe that by using a more stable
optimization algorithm, such as L-BFGS, after training with Adam, lower loss values
could be achieved. The value of the testing loss is of the same order of the training
loss; this indicates that the learnt operator is as accurate when evaluated on (new)
functions belonging to the same family, i.e. the set of bump functions.

We performed the same test with varying choices of depth and width of the neural
networks used to train δ and σ. Result of these simulations are reported in Table 5.1.
We note that the training and testing loss are not sensitive to the sizes of the NNs.

Due to the near-constant behavior of the δ(x) when trained as DNNs, we perform
tests where this parameter is a positive real number, and learn this values as well as
the neural network for σ(x) using the same algorithm as described above. An example
of these results is reported in Figure 5.2. Here, the plots represent the same quantities
as in Figure 5.1.

With the purpose of testing the generalization properties of our learning proce-
dure, we also perform cross-validation tests, i.e. we train the parameters using a set
of basis functions and test the learnt operator on a set of functions generated with a
different basis. In this test we kept all the parameters the same as in the first test with
the exception of the shape of the basis functions used for the testing functions, which
are generated by using the linear hat functions defined in (3.2). The corresponding



8 Tempered and Truncated Models

4 2 0 2 4
x

1.66

1.68

1.70

1.72

1.74

pa
ra

m
et

er

Delta Prediction
delta

4 2 0 2 4
x

2.0

2.1

2.2

2.3

2.4

pa
ra

m
et

er

Sigma Prediction
sigma

4 2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

Random Test Function
test function

0 200 400 600 800 1000
iteration

30

40

50

60

70

80

90

100

pe
rc

en
t l

os
s

Training Loss, loss=32.857%

0 200 400 600 800 1000
iteration

30

40

50

60

70

80

90

100

pe
rc

en
t e

rro
r

Testing Error, loss=30.826%

4 2 0 2 4
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Tempered and Truncated Ops 
 on Random Test Function

tempered
truncated
temp-trunc

delta NN width=8 layers=2, tanh act.; sigma NN width=8 layers=2, tanh act.; 10 basis on [-8,8]; 32 train w shape 0, 32 test w shape 0

Fig. 5.1. Result of training and testing NNs with width 8 and depth 2. Both training and
testing functions are generate using bump basis functions.

Test

Fig. 5.2. Results of training with the parameter δ trained as a constant value, and σ trained
as neural network.



H.A. Olson, M. D’Elia, M. Foss, M. Gulian, and P. Radu 9

results, for a new run of the algorithm, that results in slightly different δ(x) and σ(x)
than in Figure 5.1, are reported in Figure 5.3. We observe a testing percent error
of 40%; the higher value is justified by the fact that the test functions are substan-
tially different from the training functions, as they are generated using different basis
functions.
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Fig. 5.3. Result of training and cross-validation tests for NNs with width 8 and depth 2.
The training functions are generated using bump basis functions whereas the testing functions are
generated using hat functions.

6. Conclusions. In this work we explored the approximation of the tempered
fractional Laplacian by means of a truncated fractional Laplacian operator with the
purpose of improving the efficiency of numerical computations. We propose a modified
truncated fractional Laplacian operator parametrized by a scaling parameter and a
horizon and we learn, via deep learning, the optimal values of these parameters such
that the action of the truncated operator is as close as possible to the one of the
tempered fractional Laplacian. Our results indicate that, for the studied basis set and
training/test functions, the percent error between the truncated and the tempered
operator is of the order of 30%, and that this is quite independent of the neural
network architecture, or even whether δ is a constant value. The same accuracy is
achieved when testing the optimal operator on new functions belonging to the same
family of functions used for training. However, when tested on functions of a different
family, the percent error increases to 40%.

While a deeper architecture does not improve the accuracy of the learnt operator,
we believe that more sophisticated optimization algorithms may yield accuracy im-
provements. Thus, part of our planned follow-up work includes the use of improved
optimization algorithms such as L-BFGS after training with the Adam optimizer to
improve final test error. If this succeeds in improving training and test error, we also
plan to run additional cross-validation tests to study how the qualitative differences
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between the training and test sets effects generalization. Furthermore, we plan to
utilize a symmetric form of the truncated operator by symmetrizing the truncated
kernel as done in, e.g., [7], to reflect the symmetric nature of the tempered fractional
kernel. Furthermore, we plan to study the differences in solutions to exterior value
problems using the tempered Laplacian and the learned truncated operator, which
may be significantly different that the observed test errors due to regularity.
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